Invertible and nilpotent matrices over antirings

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Invertible and Nilpotent Matrices over Antirings

Abstract. In this paper we characterize invertible matrices over an arbitrary commutative antiring S with 1 and find the structure of GLn(S). We find the number of nilpotent matrices over an entire commutative finite antiring. We prove that every nilpotent n×n matrix over an entire antiring can be written as a sum of ⌈log2 n⌉ square-zero matrices and also find the necessary number of square-zer...

متن کامل

On nilpotency of matrices over antirings

Article history: Received 13 May 2010 Accepted 1 June 2010 Available online 4 July 2010 Submitted by R.A. Brualdi AMS classification: 15A15 15A18

متن کامل

Structure of nilpotent matrices over fields

A zero-nonzero pattern A is said to be potentially nilpotent over a field F if there exists a nilpotent matrix with entries in F having zero-nonzero pattern A. We explore the construction of potentially nilpotent patterns over a field. We present classes of patterns which are potentially nilpotent over a field F if and only if the field F contains certain roots of unity. We then introduce some ...

متن کامل

Sums of Alternating Matrices and Invertible Matrices

A square matrix is said to be alternating-clean if it is the sum of an alternating matrix and an invertible matrix. In this paper, we determine all alternating-clean matrices over any division ring K. If K is not commutative, all matrices are alternating-clean, with the exception of the 1× 1 zero matrix. If K is commutative, all matrices are alternating-clean, with the exception of odd-size alt...

متن کامل

Column-Partitioned Matrices Over Rings Without Invertible Transversal Submatrices

Let the columns of a p× q matrix M over any ring be partitioned into n blocks, M = [M1, . . . , Mn]. If no p × p submatrix of M with columns from distinct blocks Mi is invertible, then there is an invertible p×p matrix Q and a positive integer m ≤ p such that QM = [QM1, . . . , QMn] is in reduced echelon form and in all but at most m − 1 blocks QMi the last m entries of each column are either a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Linear Algebra and its Applications

سال: 2009

ISSN: 0024-3795

DOI: 10.1016/j.laa.2008.07.016